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Abstract A new form of Quantum Statistics is deduced from a general model of interac-
tions between particles based on Probability Theory and by the minimization of energy of
quantum states. As a result of the theory a new definition of entropy is obtained, together
with a generalization of the Pauli’s exclusion principle valid for fermions and bosons. The
new statistics obtained for these two kinds of matter, is expressed as function of the number
of occupied quantum states ω(ε) at energy level ε, and it is an alternative and complemen-
tary form of the classical statistics of Bose–Einstein and Fermi–Dirac. New informations
are deduced about the “condensation” of matter into single states of quantum coherence and
a unified description of BEC phenomena is drawn for bosons and fermions.

Keywords Probability · Entropy · Quantum systems · Bose–Einstein condensation

1 Introduction

The form at present adopted for Quantum Statistics relative to energy distribution function
of material particles and radiation fields, treated as gas in thermal equilibrium, was first
proposed by Bose and Einstein in the years 1924–1925 [6, 10], and by Fermi and Dirac in
1926 [11, 12]. Bose–Einstein (BE) and Fermi–Dirac (FD) statistics describe the behavior of
two kinds of matter which are quite different, so as to define two great families of particles:
bosons which comply to BE distribution, and fermions which instead comply to FD distrib-
ution. Which of the two statistics we have to use in a particular case depends on experience:
for example energy distribution of photons and gas particles He-4 follows BE statistics, the
one of electrons and gas particles He-3 follows FD statistics. In general particles with mag-
netic moment’s value zero or integer (0, 1, 2, . . .), in unit � = h/(2π), are bosons; those
with magnetic moment’s value half-integer (1/2, 3/2, . . .) are fermions.

Quantum Statistics describe the collective behavior of collections of particles such as
electrons, atoms and photons, and is part of Quantum Mechanics, the theory of physical
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laws of matter and radiation at this elementary level. A basic assumption of quantum theory
is that energy, at microscopic level, assumes only discrete values which are integer multi-
ples of a certain fundamental quantity or quantum. We call these discrete values as allowed
energy levels for particles. To each level there correspond one or more quantum states, with
the same energy, and every state may be empty or occupied by only a particle or more. This
is the way energy is distributed among particles of a collection in Quantum Mechanics. If
ε is the energy of a level, the total number of quantum states of the level is denoted by
g(ε). The function g(ε) is called degeneracy of energy level ε. In general, given a system of
particles, the entire energy levels and quantum states, form what is called the microscopic
configuration of the system. As far as the way particles occupy quantum states of an energy
level, we know that two or more bosons may occupy the same quantum state; on the con-
trary fermions comply with Pauli’s exclusion principle which forbid two fermions to stay
in the same quantum state. FD statistics explains fermions’ behavior since it includes in its
structure the Pauli’s principle.

The methods used to deduce Quantum Statistics BE and FD base themselves on max-
imizing the probability of microscopic configuration and they are an extension of the one
Boltzmann proposed in his fundamental work published in 1877 [4], where he deduced the
classical Maxwell’s law of distribution of velocity for gases only by statistical reasoning and
founded the Second Law of Thermodynamics on probability theory. These methods are still
presented nowadays in elementary and basic physics textbooks.

In the following we shall present a different deduction of Quantum Statistics, which
is based on finding the minimum energy microscopic configuration. This new method is
deduced from a total general probability model, the author first presented in 1996 as an
application to the study of software systems’ complexity [2].

By this original approach we deduce two new statistics for bosons and fermions, we
shall denote respectively as BEω and FDω. While distributions BE and FD are functions
of level degeneracy g(ε), therefore of all possible quantum states for energy ε, new dis-
tributions BEω and FDω are functions of ω(ε), the number of quantum states effectively
occupied by particles at ε energy level. This form of statistics makes it possible to deduce
new information about the collective behavior of particles, such as to define exactly the fi-
nite energy interval occupied by quantum states and the existence of singularities in states
distribution, responsible for (bosonic and fermionic) matter’s “condensation” into an unique
state of quantum coherence. The existence of such a phenomenon is known as Bose–Einstein
Condensation or BEC and it has been established experimentally since 1926 for liquid He-4,
more recently for liquid He-3 isotope [17]. In the 1990s BEC was reached also with dilute
gases of bosonic alkali-atoms by many research groups [1, 9]. The statistical theory we pro-
pose in this work, defines physical conditions for coherent quantum state to exist in bosonic
and fermionic gases, whether in case of degeneracy (like liquid He-4 and He-3), or in case
of dilute gases. A generalized formulation of exclusion principle valid for fermions and the
equivalent one for bosons, is deduced from the probability model we use to draw the new
form of Quantum Statistics; hence conditions for transition to BEC are drawn for a fermi-
onic gas from the “collapse” of Pauli’s principle. By the classical work of Bardeen, Cooper
and Shhrieffer on superconductivity [3] known as BCS theory, we know this transition hap-
pens through the formation of so-called Cooper pairs, that is the pairing of two half-integer
spin fermions into one integer spin boson. The work we propose here gives a look at the
same phenomena using an approach based on completion of statistical theory started by the
“giant” Boltzmann.
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2 Boltzmann’s Method and the Deduction of Quantum Statistics BE and FD

In the long scientific debate that lasted all the second half of the XIX century, relative to
research to deduce the Second Principle of Thermodynamics from the laws of Mechanics, a
fundamental result is represented by the 1877 Boltzmann’s memoir which we have already
mentioned. In it the Austrian physicist introduces what the Ehrenfests called “the Boltz-
mann’s statistical method” [7], aimed at drawing the second principle not from a dynamical
model of gas atoms, such as in his previous work, but only from pure mathematical rea-
soning through what we can now define as a probability model. Since this work is closely
connected with the way Quantum Statistics were first deduced from this method, in this
chapter we shall give a brief summary of the subject, with some details about statistical rea-
soning and formulas which will be referred to in the following chapter. We can express in
modern language the goal of this effort as the deduction of the energy distribution function
among particles of an entire system. Referring to the fundamental hypotheses of the Quan-
tum Theory we mentioned in the introduction, the distribution function can be defined as
follows. If εi , i = 1,2,3, . . . is the discrete set of energy values the particles of a system are
allowed to occupy, the distribution function is given by ni = n(εi), i = 1,2,3, . . . , where ni

is the number of particles of the system with energy εi . Let N be the number of material
particles in the system and consider this is in thermal equilibrium with whole energy value
equal to a constant value E. Then we have two more conditions to consider in determining
the distribution function:

∑

i

ni = N and
∑

i

niεi = E

relative to total number of particles conservation and total energy conservation respectively.
In the continuous case, which is a valid approximation for the discrete case when energy

levels εi, εi+1 are very close and the numbers ni are very large, the energy distribution
function is expressed as dn(ε) = f (ε)dε, where dn(ε) is the number of particles with energy
between ε and ε + dε and f (ε) is a function of energy.

The constraints about particles number and energy conservation are then expressed as

∫

ε

f (ε)dε = N and
∫

ε

εf (ε)dε = E

where the integration takes place over the interval of possible energy values.
In the following we shall use indifferently the discrete and the continuous notation.
Given a set of energy values, there will be in general more than one way to realize a

certain distribution function. All these different ways will be obtained by varying the micro-
scopic configuration of the system, that is the distribution of particles among energy levels
and among quantum states of every energy level.

Let us consider a distribution function (n1, n2, n3, . . .) and indicate with W = W(n1, n2,

n3, . . .) the whole number of microscopic configuration for the distribution given. Of
course somehow or other the quantity W is a measure of probability of the distribution
(n1, n2, n3, . . .): the higher the value of W , the higher the probability of the distribution.
Like Boltzmann, two fundamental hypotheses are to be introduced at this point:

(a) independently of the initial state, the isolated system in thermal equilibrium evolves
to the state with most probable distribution or with maximum number of microscopic
configurations W ;
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(b) equal a priori probability of all the possible microscopic configurations (or microstates)
of the system with the same total energy (this one assumed only tacitly by Boltzmann).

Without entering too subtle considerations here about the meaning of these hypotheses,
we want to point out they are pure mathematical hypotheses; this is true particularly for
the second one which is related to axiomatic reasoning about probability theory. From a
physical point of view both of them are a posteriori justifiable only, after comparing the
results obtained from theory with those of experience.

Therefore assuming the preceding hypotheses we shall get the stationary state of the
system by maximizing W , under the constraints on total particles number and total energy,
hence by solving the problem

max
n1,n2...

W(n1, n2, n3, . . .), (1a)

∑

i

ni = N, (1b)

∑

i

niεi = E. (1c)

Function W and system’s entropy S are linked by the famous equation S = k logW , where
k is the Boltzmann’s constant.

By opportune definitions of function W , Quantum Statistics can be deduced by problem
(1a–1c). To do this we have to take into account the degeneracy of quantum states expressed
by g(ε) (also referred to as the weight of the state with energy ε), and the indistinguishability
of particles. That particles are to be considered as indistinguishable it is only an alternative
(and historical) way to say how microstates are to be counted in function W . On the contrary
with respect to classical Maxwell–Boltzmann statistics, two microstates which differ only
due to the exchange of two particles represent the same state, and in the enumeration of states
must be counted as only a single state. This way to count microstates, first proposed by Bose
in deducing Planck’s black body radiation formula through statistics, together with function
g(ε), results in two different expressions for W from which we get BE and FD statistics.
As we have said above we shall give here only a brief summary of essential formulas; a
complete classical treatment of the subject is given in [5]. Let us consider therefore a system
in thermal equilibrium made up of N identical particles with mass m.

In BE statistics any of ni particles in the same energy level εi , can occupy any of the
gi = g(εi) possible quantum states for that level. Given this rule, all distinguishable arrange-
ments with ni particles distributed among gi microstates, can be calculated by combinatorial
analysis as

C ′(gi, ni) = (gi + ni − 1)!
ni !(gi − 1)! .

Hence the function W for the whole system is given by the product

W(n1, n2, . . .) =
∏

i

(gi + ni − 1)!
ni !(gi − 1)! . (2)

The solution of problem (1a–1c) where W is given by (2) is the well known BE distribution

ni = gi

eα+βεi − 1
(3)
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with α and β constants whose value is determined through constraint conditions.
In this work we adopt the original notation used in [5] and define A = e−α ; hence (3) can

be written as

ni = Agi

eβεi − A
. (4)

A varies in the interval

0 < A ≤ 1 (5)

and when A = 1 we say that the gas is degenerate since this value maximizes the ratio
between particles and quantum states for every energy levels. In fact let us consider the ratio

ρi = ni

gi

= A

eβεi − A

and the derivative

dρi

dA
= eβεi

(eβεi − A)2
> 0.

Since this is positive, ρi is a monotone increasing function of A which attains its maximum
value for A = 1.

FD statistics can be deduced from Boltzmann’s method too. In this case we have to
assume that only one of ni particles in the same energy level εi , can occupy one of the
gi = g(εi) possible quantum states for that level. Given this rule, which is the same as
exclusion principle, all distinguishable arrangements with ni particles distributed among gi

microstates, can be calculated by combinatorial analysis as

C(gi, ni) = gi !
ni !(gi − ni)! .

Hence the function W for the whole system is given by the product

W(n1, n2, . . .) =
∏

i

gi !
ni !(gi − ni)! . (6)

FD distribution is the solution of problem (1a–1c) where W is given by (6), and it is given
by the following expression

ni = gi

eα+βεi + 1
(7)

with α and β constants whose value is determined again through constraint conditions.
Let us adopt in this case too the old original notation and define A = e−α , hence (7) can

be written as

ni = Agi

eβεi + A
. (8)

In this case A values are between 0 and infinite

0 < A ≤ ∞. (9)
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For the case of FD statistics, gas degeneration is achieved when A = ∞. As before it is easy
to see that the ratio

ρi = ni

gi

= A

eβεi + A

is a monotone increasing function of A and that ρi → 1 as A → ∞. A complete treatment
of this limit condition, which is deeply involved with what we have called the “collapse”
of Pauli’s exclusion principle, will be given in the following after the introduction of FDω

statistics.
As far as function g(ε) is concerned, in the case of a particle with mass m in a three-

dimensional infinitely deep potential well of volume V (that is constrained to move in a
space of volume V and no force acting on it), the most general expression is given by the
equation (see [14])

g(ε) = V
4π

h3
M(2m3ε)1/2 (10)

or

g(ε) = V bε1/2 (11)

where

b = 4π

h3
M(2m3)1/2, (12)

h is Planck’s constant and the factor M is equal to the total number of possible projections
of particle angular momentum. Therefore if a particle has only intrinsic angular momentum
(spin) of value S, we get M = 2S + 1. For example this is the case of electrons where
S = 1/2 and M = 1. Since the last chapter of this work will be concerned with the study of
atomic gases, we have to consider M in this general case. In a neutral atom the nuclear spin
I and the total electron angular momentum J get coupled, giving rise to the total angular
momentum F = J + I ; therefore we assume that M is given by the Lande interval rule for
hyperfine splitting of energy levels [16]:

M = (J + I ) − |J − I | + 1. (13)

Finally constants A and β are determined through constraint conditions on the total number
of particles and on the total energy of the system in thermal equilibrium. The formulas we
write for A,A0 below, are slightly different from those in [5] since they include the general
expression (10) for g(ε).

For β we get

β = 1

kT
(14)

where k is Boltzmann’s constant we already mentioned and T is the absolute temperature
of the system.

The constant A in BE distribution (4) is found to be equal to

A = A0

(
1 − 1

2
√

2
A0 + (3

√
3 − 4)

12
√

3
A2

0 − · · ·
)

(15)
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where

A0 = nδ

M

h3

(2πmkT )3/2
(16)

with nδ number of particles for unit volume (density). Obviously A ≈ A0 is a good approx-
imation for A if A � 1.

In the case of FD distribution (8), when A � 1 we still get A ≈ A0 as a good approxima-
tion. If on the contrary it is A 	 1, we have to use the following formula

lnA ≈ h2

2mkT

(
3nδ

4πM

)2/3

. (17)

As we said, the above equation for A can be obtained from those in [5] through simple
manipulation, taking into account the factor M in (10). We have also used here the density
of particles nδ instead of the total number N . In the following we shall refer to density
or total number indifferently, for function g(ε) too. The meaning will be specified in the
context.

3 A General Probability Model. Structure and Entropy of a System

We have seen in the preceding chapter how Quantum Statistics BE an FD, can be drawn
by maximizing the probability of microscopic configuration of the system. It’s an aim of
this work to present an alternative form of the same distribution functions for bosons and
fermions, obtained by minimizing the system’s energy. To get this result it is necessary to
step into abstraction and to define first a very general model based on probability theory.
We shall see then in the following chapter, how this model can be used to study quantum
systems made of many identical particles.

The more general way to represent a system independently from its features, is to take
into account only the events concerning its parts, hence, mathematically speaking, to take
into account the probability space of these events. Let (Ω,F,P ) be the probability space of
the system, where Ω = (ωi, i = 1,2,3, . . .) is the space of elementary events (or elementary
outcomes) ωi , finite or countable, F a σ -algebra of Ω,P a probability measure defined on
Ω .1 Given any two events of F , say Ei and Ej , i = 1,2,3, . . . , j = 1,2,3, . . . , we define
Eij as the event which consists in the occurrence of both events Ei and Ej , or

Eij = Ei ∩ Ej .

From properties of σ -algebra it follows that Eij ∈ F too.

1A collection F of subsets of Ω is called σ -algebra if it is an algebra, hence it has the properties: (a) Ω ∈
F ; (b) c ∈ F ⇒ c ∈ F ; (c) c1, c2, c3, . . . , ck ∈ F ⇒ ⋃k

i=1 ci ∈ F and the property (c) holds when k = ∞
too. P is a function defined on F , which satisfies the following conditions: (a) P(c) ≥ 0 for any c ∈ F ;
(b) P(Ω) = 1; (c) if ci ∈ F, i = 1,2, . . . and ci ∩ cj = φ then

P

( ∞⋃

i=1

ci

)
=

∞∑

i=1

P(ci ).

See Sinai [18] for a complete treatment.
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Let us indicate with pi,pj and qij the probabilities of Ei,Ej and Eij respectively

pi = P (Ei),

pj = P (Ej ),

qij = P (Eij )

and write them as

pi = σij + πi(j), (18a)

pj = σij + πj(i), (18b)

qij = σij + πi(j) · πj(i). (18c)

We note immediately that if σij = 0 then Ei and Ej are independent events, therefore we can
say that σij is a probability measure of mutual dependence between Ei and Ej ;πi(j), πj (i) a
probability measure of mutual independence of Ei from Ej an of Ej from Ei respectively.
A deduction of probability decomposition (18a–18c) can be given through algebraic decom-
position of events in F [2], but this is unnecessary since the model is completely justified
by the condition of existence we find below. Given the probabilities (pi,pj , qij ), we find
necessary conditions a triplet (σij ,πi(j), πj (i)) to exist simply by putting

πi(j) = pi − σij ,

πj (i) = pj − σij

and substituting in (18c). Doing so we get the quadratic equation

σ 2
ij + (1 − pi − pj )σij − qij + pipj = 0 (19)

which has real solutions for

�2
ij = (1 − pi − pj )

2 − 4(pipj − qij ) ≥ 0

hence for

qij ≥ pipj − 1

4
(1 − pi − pj )

2. (20)

Expression (20) is the existence condition of probability model (18a–18c). Note this is ob-
viously true if

qij ≥ pipj . (21)

The solution of (18a–18c) is given by

σij = 1

2
(pi + pj − 1 + �ij ), (22a)

πi(j) = 1

2
(pi − pj + 1 − �ij ), (22b)

πj(i) = 1

2
(pj − pi + 1 − �ij ). (22c)
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The model (18a–18c) and the resulting equations (22a–22c) are a way to represent the rela-
tions among the elements of the system in the abstract, through a probability space associ-
ated with the set of events concerning these elements. We need to develop further the model
to look for a concise expression representing the system as a whole.

We assume in the following that the events of the σ -algebra we are interested with, are
a finite number Λ, hence i = 1,2,3, . . . ,Λ, j = 1,2,3, . . . ,Λ. Therefore we exactly define
the system we are concerned with as the set of events (E1,E2, . . . ,EΛ) of the σ -algebra F

of the probability space (Ω,F,P ).2

We can write pi as

pi = σi + πi, (23)

with σi and πi defined as

σi = 1

Λ − 1

∑

j �=i

σij , (24)

πi = 1

Λ − 1

∑

j �=i

πi(j). (25)

From (18c) probability σij can be written

σij = πj(i)

(
qij

πj (i)

− πi(j)

)

and by substituting in (24), after some algebraic manipulation, we get

σi =
∑

j �=i

πj

πj(i)∑
i �=j πj (i)

(
qij

πj (i)

− πi(j)

)
.

We put by definition

rij = πi(j)∑
j �=i πi(j)

(
qij

πi(j)

− πj(i)

)
(26)

hence

σi =
∑

j �=i

πj rji

and from (23) it follows

pi = πi +
∑

j �=i

πj rji . (27)

The correlation parameters (26) between events Ei and Ej can be written for every pair
(i, j ), with i �= j . Note that if two events are independent, the corresponding rij is zero.
Therefore they are an expression of mutual dependence of events, whose probabilities are

2Since the set of events we consider is finite, the notion of algebra suffices to develop the probability theory
we need. Since going into the subject in depth is outside the aim of this work, and it does not matter the
physical implications of the theory, we continue to use standard definitions of probability.



2410 Int J Theor Phys (2007) 46: 2401–2428

given by (27) as functions of independent probabilities (of the occurrence of the event it-
self πi) and conditional probabilities (of the occurrence of the event depending on the “in-
dependent” occurrences of the other ones

∑
j �=i πj rji). Whatever the meaning of (26) and

(27) may be, the correlation parameters rij are closely involved with the entropy of the
system, as we shall see soon.

Let us call Relational Structure of the system of events (E1,E2, . . . ,EΛ), as we defined
it above, the product3

R =
∏

i

∏

j �=i

|rij |. (28)

On the analogy of Boltzmann we define the entropy of the system as

S = −k lnR (29)

or

S = −k
∑

i

∑

j �=i

ln |rij |. (30)

The minus sign is necessary since R is a measure of the order of the system, or of the cohe-
sion of its events, S is a measure of the disorder of the system: if all events are independent
rij = 0, R = 0 and S → ∞; on the contrary S = 0 if rij = 1 for all pairs of events. Note also
that probabilities pi and qij define the state of the system independently of the “path” or the
evolution occurred, hence entropy as defined in (29) is a function of state coordinates only.
It has the property of additivity too, as we can see below. Equation (30) can be written as

S =
∑

i

Si =
∑

i

∑

j �=i

Sij

where

Sij = −k ln |rij | (31)

is the entropy of the relation between events Ei and Ej ;

Si = −k
∑

j �=i

ln |rij |

is the entropy of the event Ei (better of its relations with other events). Hence the entropy
of the whole system equals the sum of the entropies of its events. The minimum entropy is
that of a relation between two events (31), which we write again with no subscripts so as to
highlight how it depends on correlation r

S = −k ln |r|.
By differentiating we get

dS = −k
dr

|r|

3Quantity R exactly defines, from a mathematical point of view, what Cybernetics calls the Structure of a
system [15, 19], that is the whole of relations among its elements. This Structure is neither matter nor energy,
it is information only. That is why we adopt this name for R. Matter and energy, hence physical evolution,
enter the system through entropy.
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and remembering the Second Principle of Thermodynamics in its differential form dS =
dQ

T
, where dQ is the amount of heat the system exchanges through a reversible process

(infinitesimal) occurring at temperature T , we finally obtain the differential equation

dr

|r| = −dQ

kT
. (32)

Equation (32) connects the Relational Structure of a system with physical quantities such as
energy and temperature and it is responsible for the evolution of the system to occur.

4 Application to Quantum Systems. Generalized Pauli’s principle

This chapter is concerned with the application of the theory developed in the preceding
chapter to a quantum system, consisting of many identical particles distributed on a finite
number of energy levels εl, l = 1,2, . . . .

Because of degeneracy of energy level ε, we know every level has as many quantum
states as those given by function g(ε). They are all accessible quantum states and may be
occupied or not by some particles. Let us define a new function, say ω(ε),4 whose value
equals the number of quantum states of energy level ε which are occupied at least by one
particle.

For every energy level l, l = 1,2,3, . . ., let nl be the number of particles and N = ∑
l nl

the total number of particles, gl = g(εl) the number of accessible quantum states and ωl =
ω(εl) the number of occupied quantum states. Of course the following condition holds for
every l:

1 ≤ ωl ≤ nl. (33)

In the following we have to consider both energy levels and quantum states. Therefore in
writing symbols of physical quantities we adopt the convention: from left to right the first
subscript indicates the energy level, the second subscript, or group of subscripts between
parentheses, indicates the quantum state in the level.

Let us consider then the events below with their probabilities:
El,i = quantum state i of level l is occupied (by a particle) , pl,i = P (El,i);
El,(i,j) = quantum states i and j of level l are occupied (by two particles), ql,(i,j) =

P (El,(i,j));
l = 1,2,3, . . . ; i = 1,2,3, . . . ,ωl; j = 1,2,3, . . . ,ωl .
Hence (18a–18c), (26) and (27) become

pl,i = σl,(i,j) + πl,i(j), (34a)

pl,j = σl,(i,j) + πl,j (i), (34b)

ql,(i,j) = σl,(i,j) + πl,i(j) · πl,j (i), (34c)

rl,(i,j) = πl,i(j)∑
j �=i πl,i(j)

(
ql,(i,j)

πl,i(j)

− πl,j (i)

)
, (35)

4The symbol ω is the same one used generally in Probability Theory to mean elementary outcomes of space
Ω : in fact the concepts of occupation of a quantum state and of elementary outcome are closely connected.
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pl,i = πl,i +
∑

j �=i

πl,j rl,(j,i) (36)

where the summation takes place over the ωl occupied states only.
We assume that:

(1) quantum states of a certain level have the same probability values; hence we can omit
the subscripts of these states and leave the level subscript only as follows

pl,i = pl,

ql,(i,j) = ql,

σl,(i,j) = σl,

πl,i(j) = πl,j (i) = πl,

rl,(i,j) = rl,(j,i) = rl;

(2) the occupied quantum states of a certain level have the same number of particles; hence
if nl,i is the number of particles in state i of level l this is given by, for every i

nl,i = nl

ωl

. (37)

The existence condition (20) of the general probability model (18a–18c) becomes

pl − ql ≤ 1

4
(38)

and equations (22a–22c) and (26)

σl = pl − 1

2
(1 − √

1 − 4(pl − ql)),

πl = 1

2
(1 − √

1 − 4(pl − ql)), (39)

rl = 1

(ωl − 1)

(
ql

πl

− πl

)
.

By substituting in (39) the preceding expressions for σl and πl we get

rl = 1

(ωl − 1)

pl − 1
2 (1 − √

1 − 4(pl − ql))

1
2 (1 − √

1 − 4(pl − ql))
. (40)

We can now give an axiomatic definition of bosons and fermions founded on the correlation
parameter rl . We define as bosons those particles with rl > 0, fermions those with rl < 0. As
we shall see this classification is completely coherent with the usual division of matter into
these two kinds. Let us look at the conditions for rl to be positive or negative. Because of
the hypotheses we have assumed, (36) can be written as

pl = πl(1 + (ωl − 1)rl) (41)
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from which follows

rl = 1

(ωl − 1)

(
pl

πl

− 1

)
.

Hence for quantum systems consisting of bosons the condition pl > πl holds, the opposite
pl < πl for quantum systems consisting of fermions. These conditions are not easy to ma-
nipulate because of the presence of independent probability πl . Simpler conditions which
imply pl and ql probabilities only, can be deduced directly from (40). We get rl > 0 if

pl >
1

2
(1 − √

1 − 4(pl − ql))

or

ql > p2
l . (42)

On the contrary it is rl < 0 if

ql < p2
l . (43)

Condition ql > p2
l holds for bosons and it says the probability of the same event oc-

curring twice (two particles occupy one or two distinct quantum states of the same energy
level) is higher than the square probability of a single event occurring. The opposite condi-
tion ql < p2

l is true for fermions. Inequalities (42) and (43) are the most general statistical
description of properties of bosons and fermions, and they include Pauli’s exclusion princi-
ple as a particular case. To see this we rewrite inequality (43) with all subscripts as

ql,(i,j) < p2
l,i

and assume the probabilities are given by ratios of occupancy numbers to total number of
particles.

Therefore we get

pl,i = nl,i

N

and from Bayes’ formula5

ql,(i,j) = P (El,(i,j)) = P (El,j /El,i ,El) · P (El,i/El) · P (El)

where

P (El) = nl

N
,

P (El,i/El) = nl,i

nl

,

P (El,j /El,i ,El) = nl,j − 1

nl − 2

5Bayes’ formula gives the probability of events A and B, P(A,B), through conditional probability of A given
B,P (A/B), as P(A,B) = P(A/B)P (B).
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hence

ql,(i,j) = nl,i(nl,j − 1)

N(nl − 2)
.

From (43), after some algebraic manipulations and remembering nl,i = nl,j and (37), we get

nl

ωl

<
N

N − (nl − 2)

and therefore we can write for the ratio nl/ωl

1 ≤ nl

ωl

<
1

1 − δl

where

δl = nl − 2

N
.

If it is δl < 1
2 or

nl <
N

2
+ 2 (44)

it is 1
1−δl

< 2 too, hence in that case the number of particles in each quantum state i of energy

level l is given by

nl,i = nl

ωl

= 1 (45)

since it is an integer number. Equation (45) is a way to represent Pauli’s exclusion principle
for fermions; therefore this principle is valid only in the case of (44), when the particles with
the same energy level are less than half the total number of particles of the system. When

nl ≥ N

2
+ 2 (46)

the exclusion principle “collapses” and its validity quits. We shall see in the following the
importance of condition (46) in determining the transition to BEC for fermions.

By analogous reasoning from (42) we get for bosons

nl,i = nl

ωl

>
1

1 − δl

> 1. (47)

5 The New Quantum Statistics BEω and FDω

For the quantum system we defined in Sect. 4, let el,i , i = 1,2, . . . ,ωl , be the energy of the
quantum state i of the energy level l. Because of hypothesis (1) of Sect. 4 we can put el,i = el

too. Let us consider then the mean energy of a general quantum state i in each level, as a
function of occupied quantum states

e(ω1,ω2, . . .) =
∑

l

pl,iel,i =
∑

l

plel .
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Since pl is given by (41), the mean quantum state energy e can be written as:

e(ω1,ω2, . . .) =
∑

l

πl(1 + (ωl − 1)rl)el . (48)

It is to be expected that the state of thermal equilibrium of the system corresponds with a
minimum of mean energy e, hence with the following stationary conditions:

∂e(ω1,ω2, . . .)

∂ωl

= 0, l = 1,2, . . .

or

rlel + [1 + (ωl − 1)rl] ∂el

∂ωl

= 0. (49)

We adopt two different definitions for energy el , one for each kind of matter. For the case of
bosons we define energy el as

el(ωl) = εl

(
1 + nl − 1

ωl

)
(50)

that is the energy el is given by εl times the number of particles in the state, assuming that

– the quantum state is occupied at least by one particle;
– the remaining (nl − 1) particles in level l are equally distributed among ωloccupied quan-

tum states.

We call function el(ωl) above the bosonic mode of energy distribution (or associative
mode, remember that rl > 0 for bosons). Hence for the bosonic mode the derivative is

∂el

∂ωl

= −εl

nl − 1

ω2
l

by substituting this in (49) and solving the equation, we finally get the total number of
particles in energy level l:

nl − 1 = ω2
l rl

(1 − rl)
. (51)

Equation (51) is the Bose–Einstein distribution as function of occupied quantum states ωl ,
which we also call BEω distribution.

Let us now write stationary conditions (49) for fermions. Since we know that condition
rl < 0 holds for these particles, in the following we shall write −|rl | instead of rl . Equat-
ion (49) becomes

−|rl |el + [1 − (ωl − 1)|rl|] ∂el

∂ωl

= 0 (52)

and we define energy el for the case of fermions as

el(ωl) = Ql

(
1 − nl − 1

ωl

)
. (53)

We get the energy el of a quantum state by subtracting the energy equally distributed among
other states, from the total energy Ql of the level l and assuming that
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– the quantum state is occupied by at least one particle;
– the remaining (nl − 1) particles in level l are equally distributed among ωl occupied

quantum states.

We call function el(ωl) above the fermionic mode of energy distribution (or dissociative
mode). It is important to note that fermionic mode is the same as Pauli’s exclusion principle.
In fact we get from (53) el

Ql
= 1 − nl−1

ωl
> 0 by definition, therefore ωl > nl − 1. Since 1 ≤

ωl ≤ nl obviously holds (see (33)), there must be ωl = nl too. It also follows that nlel = Ql ,
hence Ql is really the total energy of level l.

For the fermionic mode the derivative is

∂el

∂ωl

= Ql

nl − 1

ω2
l

by substituting this in (52) and solving the equation, we finally get the total number of
particles in energy level l:

nl − 1 = ω2
l |rl|

(1 + |rl |) . (54)

Equation (54) is the Fermi–Dirac distribution as function of occupied quantum states ωl ,
which we also call FDω distribution.

From the definition of entropy we have given in Sect. 2 and (32), we can get BEω and
FDω distributions as function of the energy level εl . In that which follows we omit the
indication of level subscript l, since the dependence on the energy level is meant by the
dependence on the energy ε only. By integrating the differential equation (32), after assum-
ing that dQ = dε (i.e. the energy the system exchanges through a reversible infinitesimal
transformation), we get6

∫ |r|

1

dx

x
= − 1

kT

∫ ε

0
dy

hence

|r| = e− ε
kT . (55)

By substituting the preceding expression for r in (51) and (54) we get BEω and FDω statis-
tics as function of energy. Therefore

n(ε) − 1 = ω2(ε)

e
ε

kT − 1
(56)

is the BEω statistics which holds for bosons, and

n(ε) − 1 = ω2(ε)

e
ε

kT + 1
(57)

is the FDω statistics which holds for fermions.
From the general definition of entropy (30) and from (55) we get the entropy of a quantum

system

S =
∑

l

(ωl − 1)ωl

εl

T
. (58)

6We assume that |r| = 1, hence S = 0, when ε = 0.
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The energy levels whose particles occupy all the same quantum state (ωl = 1), or con-
dense into a single quantum state, give zero contribution to the entropy of the system; that
is the entropy of the system is zero if and only if all of its components occupy the same
quantum state.

6 Equivalence of BE, BEω and FD, FDω Statistics. Existence Conditions of Occupied
Quantum States

BE and BEω statistics are equal since both of them give the distribution of particles (bosons)
of a system as function of energy. The same is true for FD and FDω statistics if particles are
fermions. In the following we shall draw the conclusion of this equivalence as far as ω(ε)

and g(ε) functions are concerned. The most important result of this analysis, we shall widely
use in the rest of this work, is concerned with the definition of a finite interval (εm, εM) for
energy of particles, instead of the infinite interval (0,∞) which classical statistics assume.

For the case of bosons, BEω statistics (56) can be written as

n(ε) = ω2(ε) + (eβε − 1)

eβε − 1
(59)

with β = 1
kT

. Assuming the distributions (4) and (59) are equal, we get

ω2(ε) = (eβε − 1)

eβε − A
A

[
g(ε) − (eβε − A)

A

]
. (60)

In order that occupied quantum states exist for energy ε, there must be ω2(ε) > 0 or

g(ε) >
eβε − A

A
. (61)

We know from (11) that function g(ε) (for unit volume) has the form

g(ε) = b
√

ε (62)

with b given by the general formula (12). If we define the function

f (ε,T ,A) = eβε − A

A
(63)

then the existence condition (61) determines the range of admissible values for energy, εm <

ε < εM , where g(ε) > f (ε,T ,A). A graph of functions g(ε) and f (ε,T ,A) in the case of
He-4 and different values of T and A is reproduced in Fig. 1. It is important to note that at
zero value of energy ε = 0, we get

f (0, T ,A) = 1 − A

A
. (64)

Let us consider now the derivative of f (ε,T ,A) with respect to temperature T

df

dT
= ∂f

∂T
+ ∂f

∂A

dA

dT
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Fig. 1 Function g and f for
He-4 at high energy

where

∂f

∂T
= − ε

AkT 2
e

ε
kT < 0,

∂f

∂A
= − 1

A2
e

ε
kT < 0

(65)

and we also know [14] that dA
dT

< 0. Therefore when T decreases:

– A increases up to the maximum value A = 1 (see (5)) and the value (64) of function f

for ε = 0 tends to 0;
– at constant A (65) says that f (ε,T ,A) increases.

Fig. 2 shows the overall movement of function f when T is varying, still in the case of
He-4.

When T decreases, the space between curves g and f decreases, hence the number of
occupied quantum states ω(ε) decreases too; since the quantity of matter of the system (the
total number of particles N ) is constant, the ratio n(ε)

ω(ε)
must increase for every occupied

energy level ε.
The triplet (ε, T ,A) which satisfies the conditions

g(ε) = f (ε,T ,A), (66a)

∂g(ε)

∂ε
= ∂f (ε,T ,A)

∂ε
(66b)

corresponding with geometrical tangency of curves g(ε) and f (ε,T ,A), defines a single
state of quantum coherence, where all particles of the system condense into the same quan-
tum state. The state of matter defined by (66a–66b) is known as Bose–Einstein Condensate
or BEC.

The theory can be simply extended to fermions. Let us write FD statistics (57) as

n(ε) = ω2(ε) + (eβε + 1)

eβε + 1
(67)
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Fig. 2 Function f for He-4 at
low energy

with β = 1
kT

as usual. Assuming the distributions FD and FDω (8) and (67) are equal, we
get ω2(ε) in the case of fermions

ω2(ε) = (eβε + 1)

eβε + A
A

[
g(ε) − (eβε + A)

A

]
(68)

with g(ε) still given by (62). The existence condition ω2(ε) > 0 is true if

g(ε) >
eβε + A

A
. (69)

If we define the function

ϕ(ε,T ,A) = eβε + A

A
(70)

we can draw the same conclusion as before by substituting the function f (ε,T ,A) with
ϕ(ε,T ,A) and the value (64) of f at ε = 0 with

ϕ(0, T ,A) = 1 + A

A
. (71)

Therefore the existence condition (69) still determines the range of admissible values for
energy, εm < ε < εM , where g(ε) > ϕ(ε,T ,A); besides the way ϕ varies with T is the same
we have seen before in the case of f since the derivatives are equal, ∂ϕ

∂T
= ∂f

∂T
and ∂ϕ

∂A
= ∂f

∂A
.

As far as parameter A is concerned, it varies in the interval (0,∞) (see (19)) and its value
is increasing while temperature T is decreasing. At the same time the value of ϕ at ε = 0,
given by (71), tends to 1 for A → ∞. Another important difference is due to Pauli’s principle
in the case of fermions. Until this principle remains valid, the ratio n(ε)

ω(ε)
is constrained to be

equal 1, therefore
∫

ε

ω(ε)dε = N (72)
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or, in other words, the space between curves g(ε) and ϕ(ε,T ,A) will contain at least as
many occupied quantum states as particles.

When T decreases and ϕ(0, T ,A) = 1+A
A

≈ 1, the space within curves g and ϕ decreases
too until ω(ε) = g(ε)7 and the value of (72) is less than N . Once this condition is reached (or
more exactly the condition (46) as we know from Sect. 3), a violation of Pauli’s exclusion
principle will occur in order that two or more particles may occupy the same quantum state
and the process of creation of Cooper pairs starts. This simple mechanism is responsible for
BEC phenomenon in the case of fermions.

We have already seen how the energy of particles can vary only in a finite interval
(εm, εM). It is simple to prove that bosons can assume minimum energy εm = 0, while fermi-
ons always have energy higher than zero εm > 0. Let us consider now systems of bosons or
fermions in conditions of degeneracy. In the case of bosons we know this condition corre-
sponds with the values A = 1 andf (ε = 0, T ,A = 1) = 0 (see (64)). The function g(ε) too
is zero for ε = 0, therefore the minimum admissible energy is εm = 0.

On the contrary this minimum energy is not admissible in the case of fermions. In fact in
this case degeneracy is given by A = ∞ and ϕ(ε = 0, T ,A = ∞) = 1 (see (71)), therefore
εm > 0. The value of εm can be calculated from the equation ϕ = g assuming ϕ ≈ 1, which
gives εm = 1

b2 or, from (12)

εm = h6

32π2M2m3
.

7 Physical Conditions for BEC in Bosons and Fermions

Let us apply the theory of quantum statistics BEω and FDω to the study of BEC transition
in quantum systems. We shall consider first the case of bosons. The single states of quantum
coherence are defined by (66a–66b) which become:

1

A
eβε − 1 = b

√
ε, (73a)

β

A
eβε = 1

2

b√
ε
. (73b)

If we consider T (or β) as an independent variable, (73a–73b) define a pair of values (ε0,A0)
as function of T , which correspond with singularity conditions. We easily get for ε0 (only
positive solutions)

√
ε0 = 1

2b
(
√

1 + 2kT b2 − 1) (74)

and from (73b)

A0 = 2
√

ε0

kT b
e

ε0
kT . (75)

As to the way ε0 and A0 vary with T we also get

ε0(T = 0) = 0,

lim
T →∞

ε0(T ) = ∞.

7When ω(ε) = g(ε) we say the gas is a Fermi sea in which exactly one atom occupies each low-energy state.
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By the identity, valid for x → 0

√
1 + x = 1 + 1

2
x + o(x)

(74) for T → 0 can be written as

√
ε0 = 1

2b
(kT b2 + o(T ))

hence it follows ε0 = o(T ) too. By substituting this in (75) we easily get

lim
T →0

A0(T ) = 1.

The following condition obviously holds

lim
T →∞

A0(T ) = 0.

Therefore in the case of bosons, singularities in the quantum state distribution are char-
acterized by the triplet (T , ε0,A0) which varies continuously from

(T = 0, ε0 = 0,A0 = 1) (76)

to

(T = ∞, ε0 = ∞,A0 = 0). (77)

Therefore BEC may occur either when the system (gas) is in degeneracy conditions
(A0 = 1), or while it is dilute (0 < A0 < 1). Let us now find general physical conditions
for BEC transition into any single state (T , ε0,A0) within the bounds (76) and (77).

If (εm, εM) is the range of possible energy values, as given by the existence condition
(61), nδ is the density of particles, we get from BE statistics

∫ εM

εm

Ab
√

ε

eβε − A
dε = nδ

which by the change of variable βε = x can be written as

A

∫ εM
kT

εm
kT

√
x

ex − A
dx = nδ

b(kT )
3
2

. (78)

Given two real numbers u and v,0 ≤ u < v, let us define the function of A,0 < A ≤ 1

B(u,v)(A) = A

∫ v

u

√
x

ex − A
dx. (79)

We can write

B(0,∞)(A) = B(0,
εm
kT

)(A) + B(
εm
kT

,
εM
kT

)(A) + B(
εM
kT

,∞)(A)

from which by substituting B(
εm
kT

,
εM
kT

)(A) with the value (78) we get

B(0,
εm
kT

)(A) + B(
εM
kT

,∞)(A) = B(0,∞)(A) − nδ

b(kT )
3
2

.
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Since the first member of the preceding equation is positive, the following condition obvi-
ously holds

nδ

b(kT )
3
2

< B(0,∞)(A).

Until this condition is true, BE and BEω statistics are valid. Therefore as to the values of
density and temperature, we get the space where single states of quantum coherence can
exist (what we call BEC region too), simply by inverting the above formula, or

nδ

b(kT )
3
2

≥ B(0,∞)(A) (80)

where the equal sign defines the condition so that BEC transition occurs.
As for temperature T within BEC region we get from (80):

T ≤ Tc = 1

k

(
nδ

bB(0,∞)(A)

) 2
3

(81)

where Tc is the critical temperature at the transition. By substituting b with the value (12)
we get for the BEC region of the (nδ, T ) plane

nδ

M(mT )
3
2

≥ 4
√

2π

h3
k

3
2 B(0,∞)(A). (82)

The state of bosonic gases in degeneracy conditions is characterized by the value A = 1 and
[14]

B(0,∞)(1) =
√

π

2

∞∑

k=1

1

k3/2
≈ 2.314.

Assuming these values for superfluid He-4 and density nδ = 1.877 × 1028 atoms m−3,
mass m = 6.644 × 10−27 kg, M = 1, since J = 0 and I = 0 in the fundamental state (see
(13)), we get from (81) the critical temperature8 is Tc = 2.8 K. In this case the formula
(81) and the Tc value obtained are the same as those given by classical BE theory, but the
proceeding we have got as a consequence of BEω statistics is quite general and can be
used for dilute gas too. BEC phenomena in dilute bosonic gases have been observed since
1995. A survey of experimental work and observations is given in [13] and in [8]. Table 1
contains a collection of data about observations of BEC in alkali-atom gases. Density and
temperature are assumed equal to typical values observed in such experiments: nδ = 1020–
1021 atoms m−3, T = 0.5–2 µK. The numeric value of parameter A is calculated through the
formulas (15) and (16), ratio is the quantity defined in (80).

A graph of the values obtained for ratio is given in Fig. 3 together with the function
B(0,∞)(A): we see from this figure that BEC phenomena in dilute bosonic gases occur on the
border of BEC region. As far as superfluid He-4 is concerned, we know that BEC is reached
at density value of liquid helium and T = 2.18 K, which is less than the temperature Tc

calculated before. The ratio (80) obtained for this value of T is reproduced in Table 1 and
Fig. 3 too.

8Calculations are performed using the International System of Units (SI), with h = 6.626 × 10−34 J s, k =
1.381 × 10−27 J K−1.
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Table 1 BEC data for bosonic alkali atoms and He-4

Atom I J M b T (K) nδ (m−3) A B(A) Ratio

Cs-133 7/2 1/2 8 5.062E+64 2.00E−06 1.00E+21 0.145 0.136 0.136

Rb-85 5/2 1/2 6 1.939E+64 5.00E−07 1.00E+20 0.286 0.284 0.284

Rb-87 3/2 1/2 4 1.361E+64 2.00E−06 1.00E+21 0.466 0.508 0.506

He-4 0 0 1 3.307E+61 2.18 1.88E+28 1.00 2.315 3.436

Fig. 3 BEC region for bosons

Equation (81) gives the upper limit of temperature in the BEC region for bosons. As for
the lower limit, another equation can be simply obtained from the singularity conditions
(66a–66b): assuming A is fixed, there will exist a minimum value of T , corresponding with
tangency of curves g(ε) and f (ε,T ,A), so that when T is less than this value no contact
point can exist between g and f . Let us suppose A � 1o r 2kT b2 	 1, then we easily get
from (73a–73b) the relation between energy and temperature which is valid when the system
is in a single state of quantum coherence:

ε = 1

2
kT . (83)

By substituting this in (73a) we get the minimum value of T as a function of A:

Tmin = 2(
√

e − A)2

kA2b2
. (84)

Therefore in order that BEC can occur for dilute bosonic gases, the temperature T must be
within the range

2(
√

e − A)2

kA2b2
≤ T ≤ 1

k

(
nδ

bB(0,∞)(A)

) 2
3

. (85)



2424 Int J Theor Phys (2007) 46: 2401–2428

The (85) expresses the complex relation between density and temperature, through parame-
ter A, in BEC phenomena as far as bosonic matter is concerned.

The simple mathematical reasoning that leads to (80) in the case of bosons, can be ex-
tended to fermions.

We have seen in Sect. 5 that FDω statistic results in the existence condition (69) which is
necessary in order that occupied quantum states may exist, hence in the finite range of energy
values (εm, εM). Therefore by integrating FD distribution over the interval of possible energy
values, we get

∫ εM

εm

Ab
√

ε

eβε + A
dε = nδ.

Given any two real numbers u and v,0 ≤ u < v, let us first define the function of A,0 ≤
A < ∞

F(u,v)(A) = A

∫ v

u

√
x

ex + A
dx (86)

then by the same change of variable βε = x and following the same procedure as before,
we arrive at the formula which represents the BEC region for fermions, as far as density and
temperature are concerned:

nδ

b(kT )
3
2

≥ F(0,∞)(A). (87)

Obviously the formulas (81) and (82) holds in the case of fermions too, by substituting the
function B(0,∞)(A) with the function F(0,∞)(A).

An investigation about temperatures of fermionic gases at BEC, can be done simply by
using (87). Table 2 reports the results of this research together with the values of the ratio
(87) in the case of K-40 and Li-6 atoms. We have assumed the values of density are in
the range nδ = 1018–1020 atoms m−3, then we have obtained the corresponding values of
T , assuming the equal sign in (87) and looking for the best numerical approximation. The
numerical value of the parameter A is calculated through the formula (16) in the case A < 1,
the formula (17) in the case A > 1.

It is to be noted also that the ratio between density and temperature in (87), means that
if density increases (decreases) 10 3 times, temperature must increase (decrease) 102 times,
in order that the ratio doesn’t vary. The same is true for (16) and (17). Therefore in the case
of density nδ = 1021 atoms m−3, we get a temperature 100 times higher than in the case of
density nδ = 1018 atoms m−3 and the other quantities remain unchanged.

Table 2 BEC data for fermionic alkali atoms and He-3

Atom I J M b T (K) nδ (m−3) Log10(A) F (A) Ratio

K-40(a) 4 1/2 9 9.399E+63 6.00E−08 1.00E+18 −0.798 0.134 0.141

K-40(b) 4 1/2 9 9.399E+63 2.00E−07 1.00E+19 −0.582 0.213 0.232

K-40(c) 4 1/2 9 9.399E+63 7.00E−07 1.00E+20 −0.398 0.313 0.354

Li-6(d) 1 1/2 3 1.828E+62 2.00E−07 1.00E+18 0.308 1.147 1.192

Li-6(e) 1 1/2 3 1.828E+62 9.00E−07 1.00E+19 0.317 1.165 1.249

Li-6(f) 1 1/2 3 1.828E+62 4.00E−06 1.00E+20 0.331 1.192 1.332

He-3 1/2 0 2 4.326E+61 0.0026 1.178E+28 320.162 40022
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Fig. 4 BEC region for highly
dilute fermionic gases. (See also
Table 2 for the calculated values
of K-40 and Li-6)

The same values together with the function F(0,∞)(A) are reproduced in Fig. 4, which
represents the BEC region for fermions, in the case of highly dilute gases.

Data concerning superfluid He-3 are also reported in Table 2, together with calculated
value of ratio (87) in this case.

Obviously in the case of fermions too we can write the singularity conditions corre-
sponding with geometrical tangency of curves g(ε) and ϕ(ε,T ,A) (see (70)). In this case
(73a–73b) become

1

A
eβε + 1 = b

√
ε, (88a)

β

A
eβε = 1

2

b√
ε

(88b)

and assuming again A � 1 or 2kT b2 	 1, hence that (83) holds, we finally get the relations
which are equivalent to (84), (85) in the case of fermions:

Tmin = 2(
√

e + A)2

kA2b2
, (89)

2(
√

e + A)2

kA2b2
≤ T ≤ 1

k

(
nδ

bF(0,∞)(A)

) 2
3

. (90)

8 BEC Transition in Fermions

The formula (87) gives only an approximate description of BEC transition for fermions,
since it does not take into account the exclusion principle which is deeply involved with
the physical process fermions follow to condensate into one single quantum state. That is
immediately evident in the case of degenerate fermionic quantum systems: as A → ∞,
function F(0,∞)(A) → ∞ and from the analogous of (81) for fermions we get the condensate
temperature is T = Tc = 0 K. On the contrary we know that the observed experimental value
for temperature in the case of superfluid He-3 is T = 2.6 mK. In order that we can get the
exact conditions of BEC transition in fermionic gases, we need to consider FDω statistics
together with the violation of Pauli’s principle as given by condition (46).



2426 Int J Theor Phys (2007) 46: 2401–2428

Let n(ε) and ω(ε) be the number of particles and of occupied quantum states for unit
volume at energy level ε. Because of Pauli’s principle the equation n(ε) = ω(ε) holds for
every energy, hence the following equation holds too:

∫

ε

ω(ε)dε = nδ (91)

where the integration takes place over the finite interval (εm, εM) of possible energy values.
Condition (46) can be written as

V · n(εM) · �εM ≥ N

2
+ 2 (92)

where V is the gas volume, N the total number of particles and �εM is given by the un-
certainty principle of Heisenberg as the energy interval around εM so that only those levels
(with energy close to εM) differ physically for which the energy differ not less than �εM .
By assuming N

2 	 2 relation (91) become

n(εM) · �εM ≥ 1

2
nδ

or, since n(ε) = ω(ε)

ω(εM) · �εM ≥ 1

2
nδ. (93)

Relations (91) and (92) establish conditions for BEC transition in fermionic quantum sys-
tems. They can be rewritten in explicit form using (68):

∫ εM

εm

[
(eβε + 1)

(eβε + A)
A

(
g(ε) − (eβε + A)

A

)] 1
2

dε = nδ, (94)

(eβεM + 1)

eβεM + A
A

[
g(εM) − (eβεM + A)

A

]
(�εM)2 ≥ 1

4
n2

δ . (95)

Let us now use the preceding equations to find the conditions for BEC transition in the case
of degeneracy of the quantum system. If we define

ωD(ε) = lim
A→∞

ω(ε)

it is easy to get

ωD(ε) = [(g(ε) − 1) · (eβε + 1)] 1
2 . (96)

By replacing ω(ε) with ωD(ε), and g(ε) with b
√

ε, (94) and (95) become

∫ εM

εm

[(b√
ε − 1)(eβε + 1)] 1

2 dε = nδ, (97)

(b
√

εM − 1)(eβεM + 1)(�εM)2 ≥ 1

4
n2

δ . (98)
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The existence condition for occupied quantum states, ωD(ε) > 0, is given simply by g(ε) >

1 which results in a minimum value of energy

εm = 1

b2
. (99)

From (98) we get that temperature T must be T ≤ Tc with Tc given by

Tc = εM

k · log
[ n2

δ /4

(b
√

εM−1)(�εM)2 − 1
] . (100)

In order to calculate �εM we have to consider a generic particle with mass m and momen-
tum p. As to the uncertainties �x of x coordinate and �px of momentum projection on
x direction, the Heisenberg’s principle says that �px�x = h, and analogous equations can
be written for the other components y, z. Therefore by multiplying all three equations and
assuming that �px = �py = �pz we get

(�px)
3�V = h3 (101)

with �V = �x�y�z, is the uncertainty of the volume occupied by the particle. The total
uncertainty of momentum is:

�p = (�p2
x + �p2

y + �p2
z )

1
2 = √

3�px

and by substituting �px obtained above in (101) we get the equation

(�p)3

3
√

3
�V = h3. (102)

Since ε = p2

2m
it can be easily proved that �p = ( m

2ε
)

1
2 �ε, and by substituting this in (102)

we obtain the equation

�ε =
(

6ε

m

) 1
2 h

3
√

�V
.

As far as the uncertainty �V is concerned, we can assume it is equal to the mean admissible
volume for each particle

�V = 1

nδ

.

Therefore as to the uncertainty of energy we finally get

�ε =
(

6ε

m

) 1
2

3
√

nδh. (103)

We can now find a numerical solution of (97) which is compatible with condition (98)
for T < Tc and Tc given by (100), in the case of superfluid He-3. We assume density nδ =
1.178 × 1028 atoms m−3, as that of liquid helium 3, and mass m = 5.006 × 10−27 kg. By
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the change of variable ε = 10−23x and after some simple numerical manipulations9 (97) and
(100) become

∫ 1023εM

0
(e

0.724·x
T − 1)x

1
4 dx = 1.007 × 1026,

T ≤ Tc = εM

k(33.315 − 3
2 log εM)

.

The search for a numerical solution (εM,T ) of the preceding equations, leads to the val-
ues εM = 0.467 × 10−23 J, T ≤ Tc = 0.00297 K, and the best approximation of the integral
is obtained for T = 0.0026 K.
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